请输入您要查询的字词:

 

单词 ConstructionOfBanachLimitUsingLimitAlongAnUltrafilter
释义

construction of Banach limit using limit along an ultrafilter


Construction of Banach limit using limit along an ultrafilter

The existence of Banach limitMathworldPlanetmath is proved in mathematical analysisusually by Hahn-Banach theoremMathworldPlanetmath. (This proof can be found e.g. in[5], [2] or [4].) Here wewill show another approach using limit along a filter. In fact wedefine it as an -limit of (yn), where (yn) is theCesàro mean of the sequenceMathworldPlanetmath (xn) and is an arbitraryultrafilter on .

Theorem 1.

Let F be a free ultrafilter on N. Let (xn) be a bounded (http://planetmath.org/Bounded) realsequence. Then the functionalMathworldPlanetmathPlanetmathPlanetmath φ:R

φ(xn)=-limx1++xnn

is a Banach limit.

Proof.

We first observe that φ is defined. Let us denoteyn:=x1++xnn. Since (xn) is bounded, thesequence (yn) is bounded as well. Every bounded sequence has alimit along any ultrafilter. This means, that φ(xn)=-limynexists.

To prove that φ is a Banach limit, we should verify itscontinuity, positivity, linearity, shift-invariance and to verifythat it extends limits.

We first show the shift-invariance. By Sx we denote the sequencexn+1 and we want to show φ(Sx)=φ(x). We observe thatx1++xnn-(Sx)1++(Sx)nn=x1++xnn-x2++xn+1n=x1-xn+1n. As the sequence (xn) is bounded, the lastexpression convergesPlanetmathPlanetmath to 0. Thus φ(x)-φ(Sx)=-limx1-xn+1n=0 and φ(x)=φ(Sx).

The rest of the proof is relatively easy, we only need to use thebasic properties of a limit along a filter and of Cesàro mean.

Continuity: x1 |xn|1 |yn|1 |φ(x)|1.

Positivity and linearity follow from positivity and linearity of-limit.

Extends limit: If (xn) is a convergent sequence, then itsCesàro mean (yn) is convergentMathworldPlanetmathPlanetmath to the same limit.∎

References

  • 1 B. Balcar and P. Štěpánek, Teorie množin,Academia,Praha, 1986 (Czech).
  • 2 C. Costara and D. Popa, Exercises in functional analysisMathworldPlanetmath,Kluwer,Dordrecht, 2003.
  • 3 K. Hrbacek and T. Jech, Introduction to set theoryMathworldPlanetmath,Marcel Dekker,New York, 1999.
  • 4 T. J. Morisson, Functional analysis: An introduction toBanach spaceMathworldPlanetmaththeory, Wiley, 2000.
  • 5 Ch. Swartz, An introduction to functional analysis, MarcelDekker, NewYork, 1992.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 11:54:15