请输入您要查询的字词:

 

单词 ConvolutionInversesForArithmeticFunctions
释义

convolution inverses for arithmetic functions


Theorem.

An arithmetic functionMathworldPlanetmath f has a convolution inverse if and only if f(1)0.

Proof.

If f has a convolution inverse g, then f*g=ε, where ε denotes the convolution identity function. Thus, 1=ε(1)=(f*g)(1)=f(1)g(1), and it follows that f(1)0.

Conversely, if f(1)0, then an arithmetic function g must be constructed such that (f*g)(n)=ε(n) for all n. This will be done by inductionMathworldPlanetmath on n.

Since f(1)0, we have that 1f(1). Define g(1)=1f(1).

Now let k with k>1 and g(1),,g(k-1) be such that (f*g)(n)=ε(n) for all n with n<k. Define

g(k)=-1f(1)d|k and d<kf(kd)g(d).

Then

In the entry titled arithmetic functions form a ring, it is proven that convolution is associative and commutativePlanetmathPlanetmathPlanetmath. Thus, G={f:|f(1)0} is an abelian group under convolution. The set of all multiplicative functions is a subgroupMathworldPlanetmathPlanetmath of G.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 13:15:50