请输入您要查询的字词:

 

单词 CriterionForConstructibilityOfRegularPolygon
释义

criterion for constructibility of regular polygon


Theorem 1.

Let n be an integer with n3. Then a regularPlanetmathPlanetmathPlanetmath n-gon (http://planetmath.org/RegularPolygon) is constructiblePlanetmathPlanetmath (http://planetmath.org/Constructible2) if and only if a primitive nth root of unity (http://planetmath.org/PrimitiveRootOfUnity) is a constructible number.

Proof.

First of all, note that a is a constructible number if and only if cos(2πn)+isin(2πn) is a constructible number. See the entry on roots of unity for more details. Therefore, without loss of generality, only the constructibility of the number cos(2πn)+isin(2πn) will be considered.

Sufficiency: If a regular n-gon is constructible, then so is the angle whose vertex (http://planetmath.org/Vertex5) is the center (http://planetmath.org/Center9) of the polygonMathworldPlanetmathPlanetmath and whose rays pass through adjacent verticesMathworldPlanetmath of the polygon. The measure (http://planetmath.org/AngleMeasure) of this angle is 2πn.

By the theorem on constructible angles, sin(2πn) and cos(2πn) are constructible numbers. Note that i is also a constructible number. Thus, cos(2πn)+isin(2πn) is a constructible number.

Necessity: If ω=cos(2πn)+isin(2πn) is a constructible number, then so is ωm for any integer m.

On the complex planeMathworldPlanetmath, for every integer m with 0m<n, construct the point corresponding to ωm. Use line segmentsMathworldPlanetmath to connect the points corresponding to ωm and ωm+1 for every integer m with 0m<n. (Note that ω0=1=ωn.) This forms a regular n-gon.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 3:43:12