请输入您要查询的字词:

 

单词 816TheUniversalCoverAsAnIdentitySystem
释义

8.1.6 The universal cover as an identity system


Note that the fibration 𝖼𝗈𝖽𝖾:𝕊1𝒰 together with 0:𝖼𝗈𝖽𝖾(𝖻𝖺𝗌𝖾) is a pointed predicateMathworldPlanetmathPlanetmath in the sense of \\autorefdefn:identity-systems.From this point of view, we can see that the encode-decode proof in \\autorefsubsec:pi1s1-encode-decode consists of proving that 𝖼𝗈𝖽𝖾 satisfies \\autorefthm:identity-systemsLABEL:item:identity-systems3, while the homotopy-theoretic proof in \\autorefsubsec:pi1s1-homotopy-theory consists of proving that it satisfies \\autorefthm:identity-systemsLABEL:item:identity-systems4.This suggests a third approach.

Theorem 8.1.1.

The pair (code,0) is an identityPlanetmathPlanetmath system at base:S1 in the sense of \\autorefdefn:identity-systems.

Proof.

Let D:(x:𝕊1)𝖼𝗈𝖽𝖾(x)𝒰 and d:D(𝖻𝖺𝗌𝖾,0) be given; we want to define a function f:(x:𝕊1)(c:𝖼𝗈𝖽𝖾(x))D(x,c).By circle inductionMathworldPlanetmath, it suffices to specify f(𝖻𝖺𝗌𝖾):(c:𝖼𝗈𝖽𝖾(𝖻𝖺𝗌𝖾))D(𝖻𝖺𝗌𝖾,c) and verify that 𝗅𝗈𝗈𝗉*(f(𝖻𝖺𝗌𝖾))=f(𝖻𝖺𝗌𝖾).

Of course, 𝖼𝗈𝖽𝖾(𝖻𝖺𝗌𝖾).By \\autoreflem:transport-s1-code and induction on n, we may obtain a path pn:𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝖼𝗈𝖽𝖾(𝗅𝗈𝗈𝗉n,0)=n for any integer n.Therefore, by paths in Σ-types, we have a path 𝗉𝖺𝗂𝗋=(𝗅𝗈𝗈𝗉n,pn):(𝖻𝖺𝗌𝖾,0)=(𝖻𝖺𝗌𝖾,n) in (x:𝕊1)𝖼𝗈𝖽𝖾(x).Transporting d along this path in the fibration D^:((x:𝕊1)𝖼𝗈𝖽𝖾(x))𝒰 associated to D, we obtain an element of D(𝖻𝖺𝗌𝖾,n) for any n:.We define this element to be f(𝖻𝖺𝗌𝖾)(n):

f(𝖻𝖺𝗌𝖾)(n):𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍D^(𝗉𝖺𝗂𝗋=(𝗅𝗈𝗈𝗉n,pn),d).

Now we need 𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍λx.(c:𝖼𝗈𝖽𝖾(x))D(x,c)(𝗅𝗈𝗈𝗉,f(𝖻𝖺𝗌𝖾))=f(𝖻𝖺𝗌𝖾).By \\autorefthm:dpath-forall, this means we need to show that for any n:,

𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍D^(𝗉𝖺𝗂𝗋=(𝗅𝗈𝗈𝗉,𝗋𝖾𝖿𝗅𝗅𝗈𝗈𝗉*(n)),f(𝖻𝖺𝗌𝖾)(n))=D(𝖻𝖺𝗌𝖾,𝗅𝗈𝗈𝗉*(n))f(𝖻𝖺𝗌𝖾)(𝗅𝗈𝗈𝗉*(n)).

Now we have a path q:𝗅𝗈𝗈𝗉*(n)=n+1, so transporting along this, it suffices to show

𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍D(𝖻𝖺𝗌𝖾)(q,𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍D^(𝗉𝖺𝗂𝗋=(𝗅𝗈𝗈𝗉,𝗋𝖾𝖿𝗅𝗅𝗈𝗈𝗉*(n)),f(𝖻𝖺𝗌𝖾)(n)))=D(𝖻𝖺𝗌𝖾,n+1)𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍D(𝖻𝖺𝗌𝖾)(q,f(𝖻𝖺𝗌𝖾)(𝗅𝗈𝗈𝗉*(n))).

By a couple of lemmas about transport and dependent application, this is equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath to

𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍D^(𝗉𝖺𝗂𝗋=(𝗅𝗈𝗈𝗉,q),f(𝖻𝖺𝗌𝖾)(n))=D(𝖻𝖺𝗌𝖾,n+1)f(𝖻𝖺𝗌𝖾)(n+1).

However, expanding out the definition of f(𝖻𝖺𝗌𝖾), we have

𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍D^(𝗉𝖺𝗂𝗋=(𝗅𝗈𝗈𝗉,q),f(𝖻𝖺𝗌𝖾)(n))=𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍D^(𝗉𝖺𝗂𝗋=(𝗅𝗈𝗈𝗉,q),𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍D^(𝗉𝖺𝗂𝗋=(𝗅𝗈𝗈𝗉n,pn),d))=𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍D^(𝗉𝖺𝗂𝗋=(𝗅𝗈𝗈𝗉n,pn)\\centerdot𝗉𝖺𝗂𝗋=(𝗅𝗈𝗈𝗉,q),d)=𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍D^(𝗉𝖺𝗂𝗋=(𝗅𝗈𝗈𝗉n+1,pn+1),d)=f(𝖻𝖺𝗌𝖾)(n+1).

We have used the functoriality of transport, the characterizationMathworldPlanetmath of composition in Σ-types (which was an exercise for the reader), and a lemma relating pn and q to pn+1 which we leave it to the reader to state and prove.

This completesPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath the construction of f:(x:𝕊1)(c:𝖼𝗈𝖽𝖾(x))D(x,c).Since

f(𝖻𝖺𝗌𝖾,0)𝗉𝖺𝗂𝗋=(𝗅𝗈𝗈𝗉0,p0)*(d)=𝗋𝖾𝖿𝗅𝖻𝖺𝗌𝖾*(d)=d,

we have shown that (𝖼𝗈𝖽𝖾,0) is an identity system.∎

Corollary 8.1.2.

For any x:S1, we have (base=x)code(x).

Proof.

By \\autorefthm:identity-systems.∎

Of course, this proof also contains essentially the same elements as the previous two.Roughly, we can say that it unifies the proofs of \\autorefthm:pi1s1-decode,\\autoreflem:s1-encode-decode, performing the requisite inductive argument only once in a genericPlanetmathPlanetmathPlanetmath case.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 20:28:43