请输入您要查询的字词:

 

单词 CycleNotation
释义

cycle notation


The cycle notation is a useful convention for writing down apermutationsMathworldPlanetmath in terms of its constituent cycles. Let S be a finitesetMathworldPlanetmath, and

a1,,ak,k2

distinct elements of S. Theexpression (a1,,ak) denotes the cycle whose action is

a1a2a3aka1.

Note there are k different expressions for the same cycle; thefollowing all represent the same cycle:

(a1,a2,a3,,ak)=(a2,a3,,ak,a1),==(ak,a1,a2,,ak-1).

Also note that a 1-element cycle isthe same thing as the identityPlanetmathPlanetmathPlanetmathPlanetmath permutation, and thus there is notmuch point in writing down such things. Rather, it is customary toexpress the identity permutation simply as () or (1).

Let π be a permutation of S, and let

S1,,SkS,k

be the orbits of πwith more than 1 element. For each j=1,,k let nj denotethe cardinality of Sj. Also, choose an a1,jSj, anddefine

ai+1,j=π(ai,j),i.

We can now express π as a productPlanetmathPlanetmathPlanetmath of disjoint cycles, namely

π=(a1,1,an1,1)(a2,1,,an2,2)(ak,1,,ank,k).

By way of illustration, here are the 24 elements of the symmetricgroupMathworldPlanetmathPlanetmath on {1,2,3,4} expressed using the cycle notation, and groupedaccording to their conjugacy classesMathworldPlanetmathPlanetmath:

(),
(12),(13),(14),(23),(24),(34)
(123),(213),(124),(214),(134),(143),(234),(243)
(12)(34),(13)(24),(14)(23)
(1234),(1243),(1324),(1342),(1423),(1432)
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 19:19:39