请输入您要查询的字词:

 

单词 83pikleNOfAnNconnectedSpaceAndpikNSn
释义

8.3 πkn of an n-connected space and πk<n(Sn)


Let (A,a) be a pointed type and n:. Recall from\\autorefthm:homotopy-groups that if n>0 the set πn(A,a) has a groupstructureMathworldPlanetmath, and if n>1 the group is abelian.

We can now say something about homotopy groupsMathworldPlanetmath of n-truncated andn-connected types.

Lemma 8.3.1.

If A is n-truncated and a:A, then πk(A,a)=1 for all k>n.

Proof.

The loop spaceMathworldPlanetmath of an n-type is an(n-1)-type, hence Ωk(A,a) is an (n-k)-type, and we have(n-k)-1 so Ωk(A,a) is a mere proposition. But Ωk(A,a) is inhabited,so it is actually contractibleMathworldPlanetmath andπk(A,a)=Ωk(A,a)0=𝟏0=𝟏.∎

Lemma 8.3.2.

If A is n-connected and a:A, then πk(A,a)=1 for all kn.

Proof.

We have the following sequencePlanetmathPlanetmath of equalities:

πk(A,a)=Ωk(A,a)0=Ωk((A,a)k)=Ωk((A,a)nk)=Ωk(𝟏k)=Ωk(𝟏)=𝟏.

The third equality uses the fact that kn in order to use thatkn=k and the fourth equality uses the fact that A isn-connected.∎

Corollary 8.3.3.

πk(𝕊n)=𝟏 for k<n.

Proof.

The sphere 𝕊n is (n-1)-connected by \\autorefcor:sn-connected, sowe can apply \\autoreflem:pik-nconnected.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 20:20:37