请输入您要查询的字词:

 

单词 852TheHopfConstruction
释义

8.5.2 The Hopf construction


Definition 8.5.1.

An H-spaceconsists of

  • a type A,

  • a base point e:A,

  • a binary operationMathworldPlanetmath μ:A×AA, and

  • for every a:A, equalities μ(e,a)=a and μ(a,e)=a.

Lemma 8.5.2.

Let A be a connected H-space. Then for every a:A, the maps μ(a,):AA and μ(,a):AA are equivalences.

Proof.

Let us prove that for every a:A the map μ(a,) is an equivalence. Theother statement is symmetricMathworldPlanetmathPlanetmathPlanetmath.The statement that μ(a,) is an equivalence corresponds to a type familyP:A𝖯𝗋𝗈𝗉 and proving it corresponds to finding a sectionMathworldPlanetmath of this typefamily.

The type 𝖯𝗋𝗈𝗉 is a set (\\autorefthm:hleveln-of-hlevelSn) hence we candefine a new type family P:A0𝖯𝗋𝗈𝗉 by P(|a|0):P(a). But A is connected by assumptionPlanetmathPlanetmath, hence A0 iscontractible. This implies that in order to find a section of P, it isenough to find a point in the fiber of P over |e|0. But we haveP(|e|0)=P(e) which is inhabited because μ(e,) is equal to theidentity mapMathworldPlanetmath by definition of an H-space, hence is an equivalence.

We have proved that for every x:A0 the propositionPlanetmathPlanetmathPlanetmath P(x) is true,hence in particular for every a:A the proposition P(a) is true becauseP(a) is P(|a|0).∎

Definition 8.5.3.

Let A be a connected H-space. We define a fibration over ΣA using\\autoreflem:fibration-over-pushout.

Given that ΣA is the pushout 1A1, we can define afibration over ΣA by specifying

  • two fibrations over 𝟏 (i.e. two types F1 and F2), and

  • a family e:A(F1F2) of equivalences betweenF1 and F2, one for every element of A.

We take A for F1 and F2, and for a:A we take the equivalenceμ(a,) for e(a).

According to \\autoreflem:fibration-over-pushout, we have the followingdiagram:

\\xymatrixA\\ar@-[d]&A×A\\ar[l]-𝗉𝗋2\\ar@-𝗉𝗋1[d]\\ar[r]-μ&A\\ar@-[d]1&A\\ar[r]\\ar[l]&1

and the fibration we just constructed is a fibration over ΣA whose totalspace is the pushout of the top line.

Moreover, with f(x,y):(μ(x,y),y) we have the following diagram:

\\xymatrixA\\ar𝗂𝖽&dA×A\\ar[l]-𝗉𝗋2\\arf[d]\\ar[r]-μ&A\\ard𝗂𝖽A&A×A\\ar-𝗉𝗋2[l]\\ar-𝗉𝗋1[r]&A

The diagram commutes and the three vertical maps are equivalences, the inversePlanetmathPlanetmathPlanetmathPlanetmathPlanetmathof f being the function g defined by

g(u,v):(μ(,v)-1(u),v).

This shows that the two lines are equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath (hence equal) spans, so the totalspace of the fibration we constructed is equivalent to the pushout of the bottomline.And by definition, this latter pushout is the join of A with itself (see \\autorefsec:colimits).We have proven:

Lemma 8.5.4.

Given a connected H-space A, there is a fibration, called theHopf construction,over ΣA with fiber A and total space A*A.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 21:20:03