请输入您要查询的字词:

 

单词 853TheHopfFibration
释义

8.5.3 The Hopf fibration


We will first construct a structureMathworldPlanetmath of H-spaceMathworldPlanetmath on the circle 𝕊1, hence by\\autoreflem:hopf-construction we will get a fibrationMathworldPlanetmath over 𝕊2 with fiber𝕊1 and total space 𝕊1*𝕊1. We will then prove that this join isequivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath to 𝕊3.

Lemma 8.5.1.

There is an H-space structure on the circle S1.

Proof.

For the base point of the H-space structure we choose 𝖻𝖺𝗌𝖾.Now we need to define the multiplication operationMathworldPlanetmathμ:𝕊1×𝕊1𝕊1.We will define the curried form μ~:𝕊1(𝕊1𝕊1) of μby recursion on 𝕊1:

μ~(𝖻𝖺𝗌𝖾):𝗂𝖽𝕊1,and  μ~(𝗅𝗈𝗈𝗉):=𝖿𝗎𝗇𝖾𝗑𝗍(h).

where h:(x:𝕊1)(x=x) is the function defined in \\autorefthm:S1-autohtpy,which has the property that h(𝖻𝖺𝗌𝖾):𝗅𝗈𝗈𝗉.

Now we just have to prove that μ(x,𝖻𝖺𝗌𝖾)=μ(𝖻𝖺𝗌𝖾,x)=x for everyx:𝕊1.By definition, if x:𝕊1 we haveμ(𝖻𝖺𝗌𝖾,x)=μ~(𝖻𝖺𝗌𝖾)(x)=𝗂𝖽𝕊1(x)=x. For the equalityμ(x,𝖻𝖺𝗌𝖾)=x we do it by inductionMathworldPlanetmath on x:𝕊1:

  • If x is 𝖻𝖺𝗌𝖾 then μ(𝖻𝖺𝗌𝖾,𝖻𝖺𝗌𝖾)=𝖻𝖺𝗌𝖾 by definition, so wehave 𝗋𝖾𝖿𝗅𝖻𝖺𝗌𝖾:μ(𝖻𝖺𝗌𝖾,𝖻𝖺𝗌𝖾)=𝖻𝖺𝗌𝖾.

  • When x varies along 𝗅𝗈𝗈𝗉, we need to prove that

    𝗋𝖾𝖿𝗅𝖻𝖺𝗌𝖾\\centerdot𝖺𝗉λx.x(𝗅𝗈𝗈𝗉)=𝖺𝗉λx.μ(x,𝖻𝖺𝗌𝖾)(𝗅𝗈𝗈𝗉)\\centerdot𝗋𝖾𝖿𝗅𝖻𝖺𝗌𝖾.

    The left-hand side is equal to 𝗅𝗈𝗈𝗉, and for the right-hand side we have:

    𝖺𝗉λx.μ(x,𝖻𝖺𝗌𝖾)(𝗅𝗈𝗈𝗉)\\centerdot𝗋𝖾𝖿𝗅𝖻𝖺𝗌𝖾=𝖺𝗉λx.(μ~(x))(𝖻𝖺𝗌𝖾)(𝗅𝗈𝗈𝗉)
    =𝗁𝖺𝗉𝗉𝗅𝗒(𝖺𝗉λx.(μ~(x))(𝗅𝗈𝗈𝗉),𝖻𝖺𝗌𝖾)
    =𝗁𝖺𝗉𝗉𝗅𝗒(𝖿𝗎𝗇𝖾𝗑𝗍(h),𝖻𝖺𝗌𝖾)
    =h(𝖻𝖺𝗌𝖾)
    =𝗅𝗈𝗈𝗉.

Now recall from \\autorefsec:colimits that the join A*B of types A and B is the pushout of the diagram

A𝗉𝗋1A×B𝗉𝗋2B.
Lemma 8.5.2.

The operation of join is associative: if A, B and C are three typesthen we have an equivalence (A*B)*CA*(B*C).

Proof.

We define a map f:(A*B)*CA*(B*C) by induction. We first need to definef𝗂𝗇𝗅:A*BA*(B*C) which will be done by induction, thenf𝗂𝗇𝗋:CA*(B*C), and then 𝖺𝗉f𝗀𝗅𝗎𝖾:(t:(A*B)×C)f(𝗂𝗇𝗅(𝗉𝗋1(t)))=f(𝗂𝗇𝗋(𝗉𝗋2(t))) which will be done by induction on thefirst component of t:

(f𝗂𝗇𝗅)(𝗂𝗇𝗅(a))):𝗂𝗇𝗅(a),
(f𝗂𝗇𝗅)(𝗂𝗇𝗋(b))):𝗂𝗇𝗋(𝗂𝗇𝗅(b)),
𝖺𝗉f𝗂𝗇𝗅(𝗀𝗅𝗎𝖾(a,b)):=𝗀𝗅𝗎𝖾(a,𝗂𝗇𝗅(b)),
f(𝗂𝗇𝗋(c)):𝗂𝗇𝗋(𝗂𝗇𝗋(c)),
𝖺𝗉f(𝗀𝗅𝗎𝖾(𝗂𝗇𝗅(a),c)):=𝗀𝗅𝗎𝖾(a,𝗂𝗇𝗋(c)),
𝖺𝗉f(𝗀𝗅𝗎𝖾(𝗂𝗇𝗋(b),c)):=𝖺𝗉𝗂𝗇𝗋(𝗀𝗅𝗎𝖾(b,c)),
𝖺𝗉𝖽λx.𝖺𝗉f(𝗀𝗅𝗎𝖾(x,c))(𝗀𝗅𝗎𝖾(a,b)):=``𝖺𝗉𝖽λx.𝗀𝗅𝗎𝖾(a,x)(𝗀𝗅𝗎𝖾(b,c))′′.

For the last equation, note that the right-hand side is of type

𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍λx.𝗂𝗇𝗅(a)=𝗂𝗇𝗋(x)(𝗀𝗅𝗎𝖾(b,c),𝗀𝗅𝗎𝖾(a,𝗂𝗇𝗅(b)))=𝗀𝗅𝗎𝖾(a,𝗂𝗇𝗋(c))

whereas it is supposed to be of type

𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍λx.f(𝗂𝗇𝗅(x))=f(𝗂𝗇𝗋(c))(𝗀𝗅𝗎𝖾(a,b),𝖺𝗉f(𝗀𝗅𝗎𝖾(𝗂𝗇𝗅(a),c)))=𝖺𝗉f(𝗀𝗅𝗎𝖾(𝗂𝗇𝗋(b),c)).

But by the previous clauses in the definition, both of these types are equivalent to the following type:

𝗀𝗅𝗎𝖾(a,𝗂𝗇𝗋(c))=𝗀𝗅𝗎𝖾(a,𝗂𝗇𝗅(b))\\centerdot𝖺𝗉𝗂𝗇𝗋(𝗀𝗅𝗎𝖾(b,c)),

and so we can coerce by an equivalence to obtain the necessary element.Similarly, we can define a map g:A*(B*C)(A*B)*C, and checking that f andg are inverseMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath to each other is a long and tedious but essentiallystraightforward computation.∎

A more conceptual proof sketch is as follows.

Proof.

Let us consider the following diagram where the maps are the obviousprojections:

\\xymatrixA&A×C\\ar[l]\\ar[r]&A×CA×B\\ar[u]\\ar[d]&A×B×C\\ar[l]\\ar[u]\\ar[r]\\ar[d]&A×C\\ar[u]\\ar[d]B&B×C\\ar[l]\\ar[r]&C

Taking the colimit of the columns gives the followingdiagram, whose colimit is (A*B)*C:

\\xymatrixA*B&(A*B)×C\\ar[l]\\ar[r]&C

On the other hand, taking the colimit of the lines gives a diagram whosecolimit is A*(B*C).

Hence using a Fubini-like theorem for colimits (that we haven’t proved) wehave an equivalence (A*B)*CA*(B*C). The proof of this Fubini theoremfor colimits still requires the long and tedious computation, though.∎

Lemma 8.5.3.

For any type A, there is an equivalence ΣA2*A.

Proof.

It is easy to define the two maps back and forth and to prove that they areinverse to each other. The details are left as an exercise to the reader.∎

We can now construct the Hopf fibration:

Theorem 8.5.4.

There is a fibration over S2 of fiber S1 and total space S3.

Proof.

We proved that 𝕊1 has a structure of H-space (cf \\autoreflem:hspace-S1)hence by \\autoreflem:hopf-construction there is a fibration over 𝕊2 offiber 𝕊1 and total space 𝕊1*𝕊1. But by the two previous resultsand \\autorefthm:suspbool we have:

𝕊1*𝕊1=(Σ𝟐)*𝕊1=(𝟐*𝟐)*𝕊1=𝟐*(𝟐*𝕊1)=Σ(Σ𝕊1)=𝕊3.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 18:50:21