请输入您要查询的字词:

 

单词 85TheHopfFibration
释义

8.5 The Hopf fibration


In this sectionPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath we will define the Hopf fibration.

Theorem 8.5.1 (Hopf Fibration).

There is a fibrationMathworldPlanetmath H over S2 whose fiber over the basepoint is S1 andwhose total space is S3.

The Hopf fibration will allow us to compute several homotopy groups ofspheres.Indeed, it yields the following long exact sequenceof homotopy groups(see\\autorefsec:long-exact-sequence-homotopy-groups):

\\xymatrix@R=1.2pcπk(𝕊1)\\ar[r]&πk(𝕊3)\\ar[r]&πk(𝕊2)\\ar[lld]&&\\ar[lld]π2(𝕊1)\\ar[r]&π2(𝕊3)\\ar[r]&π2(𝕊2)\\ar[lld]π1(𝕊1)\\ar[r]&π1(𝕊3)\\ar[r]&π1(𝕊2)

We’ve already computed all πn(𝕊1), and πk(𝕊n) for k<n, so thisbecomes the following:

\\xymatrix@R=1.2pc0\\ar[r]&πk(𝕊3)\\ar[r]&πk(𝕊2)\\ar[lld]&&\\ar[lld]0\\ar[r]&π3(𝕊3)\\ar[r]&π3(𝕊2)\\ar[lld]0\\ar[r]&0\\ar[r]&π2(𝕊2)\\ar[lld]\\ar[r]&0\\ar[r]&0

In particular we get the following result:

Corollary 8.5.2.

We have π2(S2)Z and πk(S3)πk(S2) forevery k3 (where the map is induced by the Hopf fibration, seen as a mapfrom the total space S3 to the base space S2).

In fact, we can say more: the fiber sequence of the Hopf fibration will show that Ω3(𝕊3) is the fiber of a map from Ω3(𝕊2) to Ω2(𝕊1).Since Ω2(𝕊1) is contractibleMathworldPlanetmath, we have Ω3(𝕊3)Ω3(𝕊2).In classical homotopy theory, this fact would be a consequence of \\autorefcor:pis2-hopf and Whitehead’s theorem, but Whitehead’s theorem is not necessarily valid in homotopy type theory (see \\autorefsec:whitehead).We will not use the more precise version here though.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:53:24