请输入您要查询的字词:

 

单词 DeMoivreIdentityProofOf
释义

de Moivre identity, proof of


To prove the de Moivre identityMathworldPlanetmath, we will first prove by inductionMathworldPlanetmath on nthat the identity holds for all natural numbersMathworldPlanetmath.

For the case n=0, observe that

cos(0θ)+isin(0θ)=1+i0=(cos(θ)+isin(θ))0.

Assume that the identity holds for a certain value of n:

cos(nθ)+isin(nθ)=(cos(θ)+isin(θ))n.

Multiply both sides of this identity by cos(θ)+isin(θ)and expand the left side to obtain

cos(θ)cos(nθ)-sin(θ)sin(nθ)+icos(θ)sin(nθ)+isin(θ)cos(nθ)=(cos(θ)+isin(θ))(cos(nθ)+isin(nθ))
=(cos(θ)+isin(θ))n+1.

By the angle sum identities,

cos(θ)cos(nθ)-sin(θ)sin(nθ)=cos(nθ+θ)
cos(θ)sin(nθ)+sin(θ)cos(nθ)=sin(nθ+θ)

Therefore,

cos((n+1)θ)+isin((n+1)θ)=(cos(θ)+isin(θ))n+1.

Hence by induction de Moivre’s identity holds for all natural n.

Now let -n be any negative integer. Then using the fact that cos is an even and sin an odd function, we obtain that

cos(-nθ)+isin(-nθ)=cos(nθ)-isin(nθ)
=cos(nθ)-isin(nθ)cos2(nθ)+sin2(nθ)
=1cos(nθ)+isin(nθ)cos(nθ)-isin(nθ)cos(nθ)-isin(nθ)
=1cos(nθ)+isin(nθ),

the denominator of which is (cos(nθ)+isin(nθ))n. Hence

cos(-nθ)+isin(-nθ)=(cos(θ)+isin(θ))-n.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 17:31:16