请输入您要查询的字词:

 

单词 DerivationOfCosinesLaw
释义

derivation of cosines law


The idea is to prove the cosines law:

a2=b2+c2-2bccosθ

where the variables are defined by the triangle:

{xy},(0,0);(40,0)**@-;(60,30)**@-;(0,0)**@-,(20,-3)*c,(7,2)*θ,(50,12)*a,(30,17)*b

Let’s add a couple of lines and two variables, to get

{xy},(0,0);(40,0)**@-;(60,30)**@-;(0,0)**@-,(20,-3)*c,(7,2)*θ,(50,12)*a,(30,17)*b,(40,0);(60,0)**@--;(60,30)**@--,(50,-3)*x,(63,15)*y

This is all we need. We can use Pythagoras’ theorem to show that

a2=x2+y2

and

b2=y2+(c+x)2

So, combining these two we get

a2=x2+b2-(c+x)2
a2=x2+b2-c2-2cx-x2
a2=b2-c2-2cx

So, all we need now is an expression for x. Well, we can use thedefinition of the cosine function to show that

c+x=bcosθ
x=bcosθ-c

With this result in hand, we find that

a2=b2-c2-2cx
a2=b2-c2-2c(bcosθ-c)
a2=b2-c2-2bccosθ+2c2
a2=b2+c2-2bccosθ(1)
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 3:13:09