请输入您要查询的字词:

 

单词 DerivationOfRotationMatrixUsingPolarCoordinates
释义

derivation of rotation matrix using polar coordinates


We derive formally the expression for the rotationMathworldPlanetmath of a two-dimensional vector𝒗=a𝒙+b𝒚 by an angle ϕ counter-clockwise. Here𝒙 and 𝒚 are perpendicularMathworldPlanetmathPlanetmathPlanetmathPlanetmath unit vectorsMathworldPlanetmath that are oriented counter-clockwise(the usual orientation).

In terms of polar coordinates, 𝒗 may be rewritten:

𝒗=r(cosθ𝒙+sinθ𝒚),a=rcosθ;b=rsinθ,
for some angle θ and radius r0.To rotate a vector 𝒗 by ϕ really means to shift itspolar angleMathworldPlanetmath by a constant amount ϕ but leave its polar radius fixed.Therefore, the result of the rotation must be:
𝒗=r(cos(θ+ϕ)𝒙+sin(θ+ϕ)𝒚)
Expanding using the angle addition formulae, we obtain
𝒗=r(cosθcosϕ-sinθsinϕ)𝒙+(sinθcosϕ+cosθsinϕ)𝒚)
=(acosϕ-bsinϕ)𝒙+(bcosϕ+asinϕ)𝒚.

When this transformation is written out in [𝒙,𝒚]-coordinatesMathworldPlanetmathPlanetmath, we obtain the formula for the rotation matrixMathworldPlanetmath:

𝒗=[cosϕ-sinϕsinϕcosϕ][ab].
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 3:55:34