请输入您要查询的字词:

 

单词 DerivativeOfPolynomial
释义

derivative of polynomial


Let R be an arbitrary commutative ring.  If

f(X):=i=1naiXi

is a polynomialMathworldPlanetmathPlanetmathPlanetmath in the ring R[X], one can form in a polynomial ring  R[X,Y]  the polynomial

f(X+Y)=i=1nai(X+Y)i.

Expanding this by the powers (http://planetmath.org/GeneralAssociativity) of Y yields uniquely the form

f(X+Y):=f(X)+f1(X)Y+f2(X,Y)Y2,(1)

where  f1(X)R[X]  and  f2(X,Y)R[X,Y].

We define the polynomial f1(X) in (1) the derivativePlanetmathPlanetmath of the polynomial f(X) and denote it by f(X) ordfdX.

It is apparent that this algebraic definition of derivative of polynomial is in harmony with the definition of derivative (http://planetmath.org/Derivative2) of analysisMathworldPlanetmath when R is or ; then we identify substitution homomorphism and polynomial function.

It is easily shown the linearity of the derivative of polynomial and the product ruleMathworldPlanetmath

(fg)=fg+gf

with its generalisations.  Especially:

(Xn)=nXn-1forn=1, 2, 3,

Remark.  The polynomial ring R[X] may be thought to be a subring of R[[X]], the ring of formal power series in X.  The derivatives defined in (http://planetmath.org/FormalPowerSeries) R[[X]] extend the concept of derivative of polynomial and obey laws.

If we have a polynomial  fR[X1,X2,,Xm],  we can analogically define the partial derivativesMathworldPlanetmath of f, denoting them by fXi.  Then, e.g. the “Euler’s theorem on homogeneous functions (http://planetmath.org/EulersTheoremOnHomogeneousFunctions)”

X1fX1+X2fX2++XmfXm=nf

is true for a homogeneous polynomialMathworldPlanetmathPlanetmath f of degree n.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/7/10 15:38:27