请输入您要查询的字词:

 

单词 DeterminantInTermsOfTracesOfPowers
释义

determinant in terms of traces of powers


It is possible to express the determinantMathworldPlanetmath of a matrix in of traces ofpowers of a matrix.

The easiest way to derive these expressions is to specialize to the case ofdiagonal matricesMathworldPlanetmath. For instance, suppose we have a 2×2 matrix M=diag(u,v). Then

detM=uv
trM=u+v
trM2=u2+v2

From the algebraic identity (u+v)2=u2+v2+2uv, it can be concluded that detM=12(trM)2-12tr(M2).

Likewise, one can derive expressions for the determinants of larger matrices from the identities for elementary symmetric polynomials in of power sums. For instance, from the identity

xyz=16(x+y+z)3-12(x2+y2+z2)(x+y+z)+13(x3+y3+z3),

it can be concluded that

detM=16(trM)3-12(trM2)(trM)+13trM3

for a 3×3 matrix M.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/26 1:03:04