diagonal
Let be a polygon or a polyhedron. Two vertices on are adjacent
if the line segment
joining them is an edge of . A diagonal of is a line segment joining two non-adjacent vertices.
Below is a figure showing a hexagon and all its diagonals (in red) with as one of its endpoints
.
Remarks.
- •
If is convex, then the relative interior of a diagonal lies in the relative interior of . Below is a figure showing that a diagonal may partially lie outside of .
\\begin{pspicture}(-227.62204pt,0.0pt)(0.0pt,56.905502pt)\\leavevmode%\\ignorespaces\\ignorespaces\\ignorespaces\\ignorespaces\\ignorespaces\\ignorespaces%\\ignorespaces\\ignorespaces\\ignorespaces\\ignorespaces\\ignorespaces\\ignorespaces%\\ignorespaces\\ignorespaces\\ignorespaces\\ignorespaces\\ignorespaces\\ignorespaces%\\special{pst: \\pst@dict\\tx@STP\\pst@newpath\\psk@origin\\psk@swapaxes\\pst@code end}\\ignorespaces\\leavevmode\\ignorespaces\\ignorespaces\\ignorespaces\\ignorespaces%\\special{pst: \\pst@dict\\tx@STP\\pst@newpath\\psk@origin\\psk@swapaxes\\pst@code end}\\ignorespaces\\end{pspicture} - •
If a polygon has (distinct) vertices, then it has diagonals.