请输入您要查询的字词:

 

单词 DirichletHyperbolaMethod
释义

Dirichlet hyperbola method


Let f, g, and h be multiplicative functions such that f=g*h, where * denotes the convolution (http://planetmath.org/DirichletConvolution) of g and h. The Dirichlet hyperbola method (typically shortened to hyperbola method) is a way to nxf(n) by using the fact that f=g*h:

nxf(n)=nxab=ng(a)h(b)=axbxag(a)h(b)+bxaxbg(a)h(b)-axbxg(a)h(b)

Note that, since ab=nx, not both of a and b can be larger than x. The Dirichlet hyperbola method follows from this fact as well as the inclusion-exclusion principleMathworldPlanetmath.

This method for calculating nxf(n) is advantageous when the sums in of g and h are easier to handle and when |g(n)-h(n)| is relatively small for most n.

As an example, the sum nxτ(n) will be calculated using the Dirichlet hyperbola method.

Note that τ=1*1. Thus:

nxτ(n)=axbxa1+bxaxb1-axbx1=ax(xa+O(1))+bx(xb+O(1))-(ax1)(bx1)=2cx(xc+O(1))-(cx1)2=2xcx1c+O(cx1)-(x+O(1))2=2x(logx+γ+O(1x))+O(x)-(x+O(x)+O(1))=2x(12logx+γ+O(1x))-x+O(x)=xlogx+2γx+O(xx)-x+O(x)=xlogx+(2γ-1)x+O(x)

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 12:44:49