A.2.10 Identity types
The presentation here corresponds to the (unbased) path induction
principle for identity types in§1.12 (http://planetmath.org/112identitytypes).
*[right=-form]Γ ⊢A : _i
Γ ⊢a : A
Γ ⊢b : AΓ ⊢ : _i\\inferrule*[right=-intro]Γ ⊢A : _i
Γ ⊢a : AΓ ⊢ : \\inferrule*[right=-elim]Γ,x : A,y : A,p : ⊢C : _i
Γ,z : A ⊢c : C[z,z,/x,y,p]
Γ ⊢a : A
Γ ⊢b : A
Γ ⊢p’ : Γ ⊢ind_=_A’(x.y.p.C,z.c,a,b,p’) : C[a,b,p’/x,y,p]\\inferrule*[right=-comp]Γ,x : A,y : A,p : ⊢C : _i
Γ,z : A ⊢c : C[z,z,/x,y,p]
Γ ⊢a : AΓ ⊢ind_=_A’(x.y.p.C,z.c,a,a,) ≡c[a/z] : C[a,a,/x,y,p]In , , , and are bound in , and is bound in.