请输入您要查询的字词:

 

单词 A31FunctionExtensionalityAndUnivalence
释义

A.3.1 Function extensionality and univalence


There are two basic ways of introducing axioms which do not introduce new syntax or judgmental equalities (function extensionality and univalence are of this form):either add a primitive constant to inhabit the axiom, or prove all theorems which depend on the axiom by hypothesizing a variable that inhabits the axiom, cf. §1.1 (http://planetmath.org/11typetheoryversussettheory).While these are essentially equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath, we opt for the former approach because we feel that the axioms of homotopy type theory are an essential part of the core theory.

\\autoref

axiom:funext is formalized by introduction of a constant 𝖿𝗎𝗇𝖾𝗑𝗍 whichasserts that 𝗁𝖺𝗉𝗉𝗅𝗒 is an equivalence:{mathparpagebreakable}\\inferrule*[right=Π-ext]Γ ⊢f : ∏_(x:A)B
Γ ⊢g : ∏_(x:A)BΓ ⊢funext(f,g) : 𝗂𝗌𝖾𝗊𝗎𝗂𝗏(happly_f,g)The definitions of 𝗁𝖺𝗉𝗉𝗅𝗒 and 𝗂𝗌𝖾𝗊𝗎𝗂𝗏 can be found in (LABEL:eq:happly) and§4.5 (http://planetmath.org/45onthedefinitionofequivalences), respectively.

\\autoref

axiom:univalence is formalized in a similar fashion, too:{mathparpagebreakable}\\inferrule*[right=𝒰i-univ]Γ ⊢A : 𝒰 _i
Γ ⊢B : 𝒰 _iΓ ⊢𝗎𝗇𝗂𝗏𝖺𝗅𝖾𝗇𝖼𝖾 (A,B) : 𝗂𝗌𝖾𝗊𝗎𝗂𝗏(𝗂𝖽𝗍𝗈𝖾𝗊𝗏 _A,B)The definition of 𝗂𝖽𝗍𝗈𝖾𝗊𝗏 can be found in (LABEL:eq:uidtoeqv).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:43:10