A.3.2 The circle
Here we give an example of a basic higher inductive type; others follow the samegeneral scheme, albeit with elaborations.
Note that the rules below do not precisely follow the pattern of the ordinaryinductive types in \\autorefsec:syntax-more-formally: the rules refer to thenotions of transport and functoriality of maps (§2.2 (http://planetmath.org/22functionsarefunctors)), and thesecond computation rule is a propositional, not judgmental, equality. Thesedifferences are discussed in §6.2 (http://planetmath.org/62inductionprinciplesanddependentpaths).
*[right=-form]Γ Γ ⊢S^1 : _i\\inferrule*[right=-intro]Γ Γ ⊢ : S^1\\inferrule*[right=-intro]Γ Γ ⊢ : \\inferrule*[right=-elim]Γ,x : S^1 ⊢C : _i
Γ ⊢b : C[/x]
Γ ⊢ℓ : b =^C_ b
Γ ⊢p : S^1Γ ⊢ind_S^1(x.C,b,ℓ,p) : C[p/x]\\inferrule*[right=-comp]Γ,x : S^1 ⊢C : _i
Γ ⊢b : C[/x]
Γ ⊢ℓ : b =^C_ bΓ ⊢ind_S^1(x.C,b,ℓ,) ≡b : C[/x]\\inferrule*[right=-comp]Γ,x : S^1 ⊢C : _i
Γ ⊢b : C[/x]
Γ ⊢ℓ : b =^C_ bΓ ⊢S^1-loopcomp : In , is bound in . The notation for dependent paths was introduced in §6.2 (http://planetmath.org/62inductionprinciplesanddependentpaths).