e is not a quadratic irrational
We wish to show that is not a quadratic irrational, i.e. is not a quadratic extension of . To do this, we show that it can not be the root of any quadratic polynomial with integer coefficients.
We begin by looking at the Taylor series for :
This converges for every , so and . Arguingby contradiction, assume for integers, and . That is the same as .
Fix , then and , .Consider
Since for , the first two terms are integers. So the third term should be an integer. However,
is less than by our assumption that . Since there is only one integer which is less than in absolute value
, this means that for every sufficiently large which is not the case because
is not identically zero. The contradiction completes the proof.