请输入您要查询的字词:

 

单词 ElementaryProofOfOrders
释义

elementary proof of orders


When possible, our proofs avoid matrices so that the proofs retain some value to infinite dimensional settings. When we use k we mean any field, and GF(q) indicates the special case of a finite field of order q. V is always our vector spaceMathworldPlanetmath.

Remark 1.

There are many alternative methods for computing orders of classical groupsMathworldPlanetmath,for instance observing special subgroupsMathworldPlanetmathPlanetmath (http://planetmath.org/TheoryFromOrdersOfClassicalGroups2) or from Lie theory andthe study of Chevalley groups. The method explored here is intended to beelementary linear algebraMathworldPlanetmath.

The basic starting point in computing orders of classical groups is an application of elementary linear algebra rephrased in group theory terms.

Proposition 2.

GL(V) acts regularly on the set of ordered bases of vector space Vover a field k.

Proof.

Given any two bases B={bi:iI} and C={ci:iI} ofa vector space V, define the map f:VV by

(iIlibi)f=iIlici.(1)

[Note the above sum has only finitely many non-zero lik.]It follows f is an invertible linear transformation so fGL(V).Furthermore, any linear transformation gGL(V) with (bi)g=cimust satisfy (1) to be linear so indeed g=f. ThereforeGL(V) acts regularly on ordered bases of V.∎

In the world of group theory, a regularPlanetmathPlanetmathPlanetmath action is a typical substitute for knowing the order of a group. In particular, any two groups, even infiniteMathworldPlanetmath, have the same order if they have a regular action on the same set. However, we are presently after specific order of finite groupsMathworldPlanetmath so we return to the case of V a finite dimensionPlanetmathPlanetmath vector space over a finite field k=GF(q). We do however attempt to establish the orders through bijections with other sets and groups so that the results apply in more general contexts as well.

Theorem 3.
|SL(d,q)|=q(d2)i=2d(qi-1),|PSL(d,q)|=|SL(d,q)|(d,q-1),|GL(d,q)|=q(d2)i=1d(qi-1),|PGL(d,q)|=|SL(d,q)|,|ΓL(d,q)|=(q-1)q(d2)i=1d(qi-1),|PΓL(d,q)|=|ΓL(d,q)|q-1.
Proof.

When V=GF(q)d, the number of ordered bases can be counted. A basisis a set B={b1,,bd} of linearly independentMathworldPlanetmath vectors. Sob1 may be chosen freely from V-{0}, providing qd-1 possible choices.Next b2 must be chosen independent form b1 so b2 can be freelychosen from V-b1 leaving qd-q choices. In a similarPlanetmathPlanetmath fashion b3 has qd-q2 possiblities and so continuing by inductionMathworldPlanetmath wefind the total number of ordered bases to be:

(qd-1)(qd-q)(qd-qd-1).

Now we treat q as the variable of a polynomial and factor this number into:

q(d2)i=1d(qi-1).

As GL(V) acts regularly on ordered bases of V, this is the order of GL(V).

For the order of SL(V) recall the SL(V) is the kernel of the determinantMathworldPlanetmathhomomorphismPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath det:GL(V)k×. Furthermore, det issurjectivePlanetmathPlanetmath as a diagonal matrixMathworldPlanetmath can be used to exhibit any determinant we seek. We conclude

[GL(d,q):SL(d,q)]=|GF(q)×|=q-1

so that |SL(d,q)|=|GL(d,q)|/(q-1).

In a similar process, PGL(V)=GL(V)/Z(GL(V)) so if we derive the order of thecenter of GL(V) we derive the order of PGL(V). The central transformsare scalar (they must preserve every eigenspaceMathworldPlanetmath of every linear transform) soZ(GL(V)) is isomorphicPlanetmathPlanetmath to k×. Thus the order of PGL(V) is the same as the order of SL(V).

For ΓL(V) and PΓL(V) simply notice ΓL(V)=GL(V)k× so when k=GF(q) we get an additional q-1 term.

Finally, we consider PSL(V)=SL(V)/(SL(V)Z(GL(V))). The order of SL(V)Z(GL(V)) must be computed. So we require scalar transforms with determinant 1. As the such, if r is the eigen value of the scalar transform we need rd=1 in GF(q). From finite field theory we know GF(q)×q-1. As this group is cyclic we know that every element rGF(q)× satisfying rd=1 also satisfies rq-1=1 and r lies in the unique subgroup of order (d,q-1) of GF(q)×.Thus |SL(V)Z(GL(V))|=(d,q-1).∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:32:09