请输入您要查询的字词:

 

单词 Ellp
释义

ell^p


Let 𝔽 be either or , and let p with p1. We define p to be the set of all sequences (ai)i0 in 𝔽 such that

i=0|ai|p

converges.

We also define to be the set of all boundedPlanetmathPlanetmath (http://planetmath.org/BoundedInterval) sequences (ai)i0 with norm given by

(ai)=sup{|ai|:i0}.

By defining addition and scalar multiplication pointwise, p(𝔽) and(𝔽) have a natural vector spaceMathworldPlanetmath stucture.That the sum of two elements on p(𝔽) is again an elementin p(𝔽) follows from Minkowski inequalityMathworldPlanetmath(see below).We can make p into a normed vector spacePlanetmathPlanetmath, by defining the norm as

(ai)p=(i=0|ai|p)1/p.

The normed vector spaces and p for p1 are complete under these norms, making them into Banach spacesMathworldPlanetmath. Moreover, 2 is a Hilbert spaceMathworldPlanetmath under the inner productMathworldPlanetmath

(ai),(bi)=i=0aibi¯

where x¯ denotes the complex conjugateMathworldPlanetmath of x.

For p>1 the (continuousMathworldPlanetmath) dual spaceMathworldPlanetmath of p is q where 1p+1q=1, and the dual space of 1 is .

Properties

  1. 1.

    If a=(a0,a1,)p(𝔽) for 1p<, thenlimkak=0.(proof. (http://planetmath.org/ThenA_kto0IfSum_k1inftyA_kConverges))

  2. 2.

    For 1p<, p(𝔽) is separable, and (𝔽)is not separable.

  3. 3.

    Minkowski inequality. If a,bp(𝔽) where p1, then

    a+bpap+bp.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/6/18 10:41:56