请输入您要查询的字词:

 

单词 EquivalentConditionsForUniformIntegrability
释义

equivalent conditions for uniform integrability


Let (Ω,,μ) be a measure spaceMathworldPlanetmath and S be a boundedPlanetmathPlanetmathPlanetmath subset of L1(Ω,,μ). That is, |f|𝑑μ is bounded over fS. Then, the following are equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath.

  1. 1.

    For every ϵ>0 there is a δ>0 so that

    A|f|𝑑μ<ϵ

    for all fS and μ(A)<δ.

  2. 2.

    For every ϵ>0 there is a K>0 satisfying

    |f|>K|f|𝑑μ<ϵ

    for all fS.

  3. 3.

    There is a measurable functionMathworldPlanetmath Φ:[0,) such that Φ(x)/|x| as |x| and

    Φ(f)𝑑μ

    is bounded over all fS. Moreover, the function Φ can always be chosen to be symmetricPlanetmathPlanetmath and convex.

So, for bounded subsets of L1, either of the above properties can be used to define uniform integrability. Conversely, when the measure space is finite, then conditions (2) and (3) are easily shown to imply that S is bounded in L1.

To show the equivalence of these statements, let us suppose that |f|𝑑μ<L for fS.

(1) implies (2)

For ϵ>0, property (1) gives a δ>0 so that A|f|𝑑μ<ϵ whenever fS and μ(A)<δ. Choosing K>L/δ, Markov’s inequalityMathworldPlanetmath gives

μ(|f|>K)K-1|f|dμL/K<δ

and, therefore, |f|>K|f|𝑑μ<ϵ.

(2) implies (3)

For each n=1,2,, property (2) gives a Kn satisfying

(|f|-Kn)+𝑑μ|f|>Kn|f|𝑑μ2-n.

Without loss of generality, the Kn can be chosen to be increasing to infinityMathworldPlanetmathPlanetmath, so we can define Φ(x)=n(|x|-Kn)+. Then,

Φ(f)𝑑μ=n(|f|-Kn)+𝑑μn2-n=1.

(3) implies (1)

First, suppose that Φ(f)𝑑μ<M for fS.For ϵ>0, the condition that Φ(x)/|x| as |x| gives a K>0 such that Φ(x)/|x|2M/ϵ whenever |x|>K.Setting δ=ϵ/2K,

A|f|𝑑μ|f|>K|f|𝑑μ+Kμ(A)<(ϵ/2M)|f|>KΦ(f)𝑑μ+Kδ<ϵ/2+ϵ/2=ϵ.

whenever μ(A)<δ and fS.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 17:28:12