请输入您要查询的字词:

 

单词 EquivalentFormulationOfNakayamasLemma
释义

equivalent formulation of Nakayama’s lemma


The following is equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath to Nakayama’s lemma.

Let A be a ring, M be a finitely-generated A-module, N a submodule of M, and 𝔞 an ideal of A contained in its Jacobson radicalMathworldPlanetmath. Then M=𝔞M+NM=N.

Clearly this statement implies Nakayama’s Lemma, by setting N to 0. To see that it follows from Nakayama’s Lemma, note first that by the second isomorphism theorem for modules,

𝔞M+NN=𝔞M𝔞MN

and the obvious map

𝔞M𝔞MN:ama(m+N)

is surjectivePlanetmathPlanetmath; the kernel is clearly 𝔞MN. Thus

𝔞M+NN𝔞MN

So from M=𝔞M+N we get M/N=𝔞(M/N). Since 𝔞 is contained in the Jacobson radical of M, it is contained in the Jacobson radical of M/N, so by Nakayama, M/N=0, i.e. M=N.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 3:18:24