Erdős-Fuchs theorem
Let be a set of natural numbers. Let be the number of ways to represent as a sum of two elements in , that is,
Erdős-Fuchs theorem [1, 2] states that if , then
(1) |
cannot hold.
On the other hand, Ruzsa [5] constructed a set for which
Montgomery and Vaughan [4] improved on the original Erdős-Fuchs theorem by showing that for every
holds. In [4] a result of Jurkat is citedwhich appearedin the Ph. D. thesis of Hayashi [3] whichimproves in (1) to .
References
- 1 Paul Erdős and Wolfgang H.J. Fuchs. On a problem of additive number theory. J. Lond. Math. Soc., 31:67–73, 1956. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0070.04104Zbl 0070.04104.
- 2 Heini Halberstam and Klaus Friedrich Roth. Sequences. Springer-Verlag, second edition, 1983. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0498.10001Zbl 0498.10001.
- 3 E. K. Hayashi. Omega theorems for the iterated additive convolution ofnon-negative arithmetic function
. PhD thesis, University of Illinois at Urbana-Champaign, 1973.
- 4 H. L. Montgomery and R. C. Vaughan. On the Erdős-Fuchs theorems. In A tribute to Paul Erdős, pages 331–338. Cambridge Univ.Press, Cambridge, 1990. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0715.11005Zbl 0715.11005.
- 5 Imre Ruzsa. A converse to a theorem of Erdős and Fuchs. J. Number Theory
, 62(2):397–402, 1997. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0872.11014Zbl 0872.11014.