请输入您要查询的字词:

 

单词 ErdHosHeilbronnConjecture
释义

Erdős-Heilbronn conjecture


Let Ap be a set of residues modulo p, and let h be a positive integer, then

hA={a1+a2++aha1,a2,,ah are distinct elements of A}

has cardinality at least min(p,hk-h2+1). This was conjectured by Erdős and Heilbronn in 1964[1]. The first proof was given by Dias da Silva and Hamidoune in 1994.

References

  • 1 Paul Erdős and Hans Heilbronn. On the addition of residue classesMathworldPlanetmath modp. Acta Arith., 9:149–159, 1964. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0156.04801Zbl 0156.04801.
  • 2 Melvyn B. Nathanson. Additive Number Theory: Inverse Problems and Geometry ofSumsets, volume 165 of GTM. Springer, 1996. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0859.11003Zbl 0859.11003.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:04:31