请输入您要查询的字词:

 

单词 EulerPolynomial
释义

Euler polynomial


The Euler polynomialsE0(x),E1(x),E2(x),  are certain polynomialsPlanetmathPlanetmath of the indeterminate x with rational coefficients (whose denominators may only be powers 1, 2, 4, 8,  of 2).  The Euler polynomials may be defined by means of the generating function such that

2extet+1=n=0En(x)tnn!,

i.e. one can get them by dividing the Taylor series 2+2xt+x2t2+13x3t3+  by the Taylor series 2+t+12t2+16t3+.  There are also explicit formulae for the polynomials, e.g.

En(x)=k=0n(nk)Ek2k(x-12)n-k

via the Euler numbersMathworldPlanetmath Ek.  Conversely, the Euler numbers are expressed with the Euler polynomials through

Ek= 2kEk(12).

The first seven Euler polynomials are

E0(x)= 1
E1(x)=x-12
E2(x)=x2-x
E3(x)=x3-32x2+14
E4(x)=x4-2x3+x
E5(x)=x5-52x4+52x2-12
E6(x)=x6-3x5+5x3-3x

The Euler polynomials have the beautiful addition formulaPlanetmathPlanetmath

En(x+y)=k=0n(nk)Ek(x)yk

and the derivativePlanetmathPlanetmath

En(x)=nEn-1(x)  (for n=1, 2,).

The Euler polynomials form an example of Appell sequences.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/3 19:52:55