请输入您要查询的字词:

 

单词 EulersDerivationOfTheQuarticFormula
释义

Euler’s derivation of the quartic formula


Let us consider the quartic equation

y4+py2+qy+r=0,(1)

where p,q,r are arbitrary known complex numbersMathworldPlanetmathPlanetmath.  We substitute in the equation

y:=u+v+w.(2)

We get firstly
y2=(u2+v2+w2)+2(vw+wu+uv),
y4=(u2+v2+w2)2+4(u2+v2+w2)(vw+wu+uv)+4(v2w2+w2u2+u2v2)+8uvw(u+v+w).

Thus (1) attains the form

4(v2w2+w2u2+u2v2)+(u2+v2+w2)2+p(u2+v2+w2)+r   
+(vw+wu+uv)[4(u2+v2+w2)+2p]+(u+v+w)[8uvw+q]=0.

When u,v,w are determined so that

u2+v2+w2=-p2,(3)
uvw=-q8,(4)

the expressions in the brackets vanish and our equation shrinks to the form

v2w2+w2u2+u2v2=p2-4r16.(5)

Squaring (4) gives

u2v2w2=q264.(6)

The left hand sides of (3), (5) and (6) are the elementary symmetric polynomials of u2, v2, w2, whence these three squares are the roots z1, z2, z3 of the so-called cubic resolvent equation

z3+p2z2+p2-4r16z-q264=0.(7)

Therefore we may write

u=±z1,v=±z2,w=±z3.

All 8 sign combinationsMathworldPlanetmathPlanetmath of those square roots satisfy the equations (3), (5), (6). In order to satisfy also (4) the signs must be chosen suitably.  If  u0,v0,w0 is some suitable combination of the values of the square roots, then all possible combinations are

u0,v0,w0;u0,-v0,-w0;-u0,v0,-w0;-u0,-v0,w0.

Accordingly, we have the

Theorem (Euler 1739).  The roots of the equation (1) are

{y1=u0+v0+w0,y2=u0-v0-w0,y3=-u0+v0-w0,y4=-u0-v0+w0,(8)

where u0,v0,w0 are square roots of the roots of the cubic resolvent (7).  The signs of the square roots must be chosen such that

u0v0w0=-q8.

The equations (8) imply an important formulaMathworldPlanetmathPlanetmath

(y1-y2)(y1-y3)(y1-y4)(y2-y3)(y2-y4)(y3-y4)=-26(v02-w02)(w02-u02)(u02-v02)
=-64(z2-z3)(z3-z1)(z1-z2),

which yields the

Corollary.  A quartic equation has a multiple root always and only when its cubic resolvent has such one.

References

  • 1 Ernst Lindelöf: Johdatus korkeampaan analyysiin. Fourth edition. Werner Söderström Osakeyhtiö, Porvoo ja Helsinki (1956).
  • 2 K. Väisälä: Lukuteorian ja korkeamman algebran alkeet.  Tiedekirjasto No. 17. Kustannusosakeyhtiö Otava, Helsinki (1950).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/3 20:15:22