请输入您要查询的字词:

 

单词 EulersTheoremOnHomogeneousFunctions
释义

Euler’s theorem on homogeneous functions


Theorem 1 (Euler).

Let f(x1,,xk) be a smooth homogeneous function of degree n. That is,

f(tx1,,txk)=tnf(x1,,xk).(*)

Then the following identity holds

x1fx1++xkfxk=nf.
Proof.

By homogeneity, the relationMathworldPlanetmath ((*)1) holds for all t. Taking the t-derivative of both sides, we establish that the following identity holds for all t:

x1fx1(tx1,,txk)++xkfxk(tx1,,txk)=ntn-1f(x1,,xk).

To obtain the result of the theorem, it suffices to set t=1 in the previous formulaMathworldPlanetmathPlanetmath.∎

Sometimes the differential operator x1x1++xkxk is called the Euler operator. An equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath way to state the theorem is to say that homogeneous functions are eigenfunctions of the Euler operator, with the degree of homogeneity as the eigenvalueMathworldPlanetmathPlanetmathPlanetmathPlanetmath.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:06:17