请输入您要查询的字词:

 

单词 EveryBoundedSequenceHasLimitAlongAnUltrafilter
释义

every bounded sequence has limit along an ultrafilter


Theorem 1.

Let F be an ultrafilterMathworldPlanetmath on N and (xn) be a real boundedPlanetmathPlanetmathPlanetmathsequence. Then F-limxn exists.

Proof.

Let (xn) be a bounded sequence. Choose a0 and b0 suchthat a0xnb0. Put c0:=a0+b02. Thenprecisely one of the sets {n;xna0,c0},{n;xnc0,b0} belongs to the filter .(Their union is and the filter is an ultrafilter.) Wechoose a1,b1 as that subinterval froma0,c0 and c0,b0 for which C:={n;xna1,b1} belongs to .

Now we again bisect the interval a1,b1 by puttingc1=a1+b12. Denote A:={n;xna1,c1}, B:={n;xnc1,b1}. Itholds BA(C)=. By the alternativecharacterization of ultrafilters we get that one of these sets isin . The set C doesn’t belong to , thereforeit must be one of the sets A and B. We choose thecorresponding interval for a2,b2.

By inductionMathworldPlanetmath we obtain the monotonous sequences (an), (bn)with the same limit limnan=limnbn:=L such thatfor any n it holds {n;xna1,b1}.

We claim that -limxn=L. Indeed, for any ε>0 there isn such that an,bn(L-ε,L+ε), thus{n;xnan,bn}A(ε). The set{n;xna1,b1} belongs to , henceA(ε) as well.∎

Note that, if we modify the definition of -limit in a such waythat we admit the values ±, then every sequence has-limit along an ultrafilter . (The limit is + iffor each neighborhoodMathworldPlanetmathPlanetmath V of infinityMathworldPlanetmathPlanetmath, the set {n;xnV} belongs to . Similarly for -.)

References

  • 1 M. A. Alekseev, L. Yu. Glebsky, and E. I. Gordon, Onapproximations ofgroups, group actions and Hopf algebras, Journal of Mathematical Sciences107 (2001), no. 5, 4305–4332.
  • 2 B. Balcar and P. Štěpánek, Teorie množin,Academia,Praha, 1986 (Czech).
  • 3 K. Hrbacek and T. Jech, Introduction to set theoryMathworldPlanetmath,Marcel Dekker,New York, 1999.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:51:31