请输入您要查询的字词:

 

单词 EveryCongruenceIsTheKernelOfAHomomorphism
释义

every congruence is the kernel of a homomorphism


Let Σ be a fixed signaturePlanetmathPlanetmathPlanetmath, and 𝔄 a structureMathworldPlanetmath for Σ. If is a congruenceMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath on 𝔄, then there is a homomorphismPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath f such that is the kernel of f.

Proof.

Define a homomorphism f:𝔄𝔄/:a[[a]]. Observe that ab if and only if f(a)=f(b), so is the kernel of f. To verify that f is a homomorphism, observe that

  1. 1.

    For each constant symbol c of Σ, f(c𝔄)=[[c𝔄]]=c𝔄/.

  2. 2.

    For each n and each n-ary function symbol F of Σ,

    f(F𝔄(a1,an))=[[F𝔄(a1,an)]]
    =F𝔄/([[a1]],[[an]])
    =F𝔄/(f(a1),f(an)).
  3. 3.

    For each n and each n-ary relation symbol R of Σ,if R𝔄(a1,,an) then R𝔄/([[a1]],,[[an]]), soR𝔄/(f(a1),,f(an)).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 13:48:18