请输入您要查询的字词:

 

单词 ExampleOfRiemannTripleIntegral
释义

example of Riemann triple integral


Determine the volume of the solid in 3 by the part of the surface

(x2+y2+z2)3= 3a3xyz

being in the first octant (a>0).

Since x2+y2+z2 is the squared distance of the point  (x,y,z)  from the origin, the solid is apparently defined by

D:={(x,y,z)3x0,y0,z0,(x2+y2+z2)33a3xyz}.

By the definition

𝐦𝐞𝐚𝐬(D):=χD(v)𝑑v

in the parent entry (http://planetmath.org/RiemannMultipleIntegral), the volume in the questionis

V=D1𝑑v=D𝑑x𝑑y𝑑z.(1)

For calculating the integral (1) we express it by the (geographic) spherical coordinatesMathworldPlanetmath through

{x=rcosφcosλy=rcosφsinλz=rsinφ

where the latitude angle φ of the position vector r is measured from the xy-plane (not as the colatitude ϕ from the positive z-axis); λ is the longitude.  For the change of coordinates, we need the Jacobian determinant

(x,y,z)(r,φ,λ)=|xryrzrxφyφzφxλyλzλ|=|cosφcosλcosφsinλsinφ-rsinφcosλ-rsinφsinλrcosφ-rcosφsinλrcosφcosλ0|,

which is simplified to r2cosφ.  The equation of the surface attains the form

r6= 3a3r3cos2φsinφcosλsinλ,

or

r=3a3cos2φsinφcosλsinλ3:=r(φ,λ).

In the solid, we have  0rr(φ,λ)  and

r= 0if only ifcos2φsinφcosλsinλ= 0.

Thus we can write

V=0π20π20r(φ,λ)r2cosφdφdλdr=130π20π2(/r=0r(φ,λ)r3)cosφdφdλ,

getting then

V=a30π2(cos3φ)(-sinφ)𝑑φ0π2(cosλ)(-sinλ)𝑑λ=a3/φ=0π2cos4φ4/λ=0π2cos2λ2=a38.

Remark.  The general for variable changing in a triple integral is

Df(x,y,z)𝑑x𝑑y𝑑z=Δf(x(ξ,η,ζ),y(ξ,η,ζ),z(ξ,η,ζ))|(x,y,z)(ξ,η,ζ)|𝑑ξ𝑑η𝑑ζ.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 14:16:40