请输入您要查询的字词:

 

单词 ExampleOfSolvingACubicEquation
释义

example of solving a cubic equation


Let us use Cardano’s formulae for solving algebraically the cubic equation

x3+3x2-1= 0.(1)

First apply the Tschirnhaus transformation (http://planetmath.org/CardanosDerivationOfTheCubicFormula)  x:=y-1  for removing the quadratic term; from  (y-1)3+3(y-1)2-1=0  we get the simplified equation

y3+3y-2= 0.(2)

We now suppose that  y:=u+v.  Substituting this into (2) and rewriting the equation in the form

(u3+v3-2)+3(uv+1)(u+v)= 0,

one can determine u and v such that  u3+v3-2=0  and  uv+1=0,  i.e.

{u3+v3= 2,u3v3=-1.

Using the properties of quadratic equation, we infer that u3 and v3 are the roots of the resolvent equation

z2-2z-1= 0.

Therefore, u and v satisfy the binomial equations

u3= 1+2,v3= 1-2,(3)

respectively.  If we choose the real radicalsMathworldPlanetmathPlanetmathu=u0=1+23  and v=v0=1-23,  the other solutions u,v of (3) are

ζu0,ζ2v0;ζ2u0,ζv0,(4)

where  ζ=-1+i32,ζ2=-1-i32 are the primitive third roots of unityMathworldPlanetmath.  One must combine the pairs  (u,v)  of (4) so that

uv=u3v33=-1.

Accordingly, all three roots of the cubic equation (2) are

{y1=u0+v0=1+23+1-23,y2=ζu0+ζ2v0=-1+i321+23+-1-i321-23,y3=ζ2u0+ζv0=-1-i321+23+-1+i321-23.

The roots of the original equation (1) are gotten via the used substitution equation  x:=y-1, i.e. adding -1 to the values of y.  If we also separate the real (http://planetmath.org/RealPart) and imaginary partsDlmfMathworldPlanetmath, we have the following solution of (1):

{x1=-1+1+23+1-23,x2=-1-12(1+23+1-23)+i32(1+23-1-23),x3=-1-12(1+23+1-23)-i32(1+23-1-23).

One of the roots is a real number, but the other two are (i.e. non-real) complex conjugatesDlmfMathworldPlanetmath of each other.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/24 19:10:16