请输入您要查询的字词:

 

单词 ExampleOfSummationByParts
释义

example of summation by parts


PropositionPlanetmathPlanetmath. The series n=1sinnφn and n=1cosnφn convergePlanetmathPlanetmath for every complex value φ which is not an even multiple of π.

Proof. Let ε be an arbitrary positive number. One uses the

sinφ+sin2φ++sinnφ=sin(n+12)φ-sinφ22sinφ2,(1)
cosφ+cos2φ++cosnφ=-cos(n+12)φ+cosφ22sinφ2,(2)

proved in the entry “example of telescoping sum (http://planetmath.org/ExampleOfTelescopingSum)”. These give the

|sinφ+sin2φ++sinnφ|22|sinφ2|:=Kφ,
|cosφ+cos2φ++cosnφ|22|sinφ2|:=Kφ

for any  n=1, 2, 3,.We want to apply to the series n=1cosnφn the Cauchy general convergence criterion (http://planetmath.org/CauchyCriterionForConvergence) for series. Let us use here the short notation

cosNφ+cos(N+1)φ++cos(N+p)φ:=SN,N+p(p=0, 1, 2,).

Then, utilizing Abel’s summation by partsPlanetmathPlanetmath, we obtain

|n=NN+Pcosnφn|=|p=0P1N+pcos(N+p)φ|=|p=0P-1(1N+p-1N+p+1)SN,N+p+1N+PSN,N+P|
p=0P-1(1N+p-1N+p+1)|SN,N+P|+1N+P|SN,N+P|<
<p=0P-1(1N+p-1N+p+1)2Kφ+1N+P2Kφ=1N2Kφ;

the last form is gotten by telescoping (http://planetmath.org/TelescopingSum) the preceding sum and before that by using the identityPlanetmathPlanetmathPlanetmath

SN,N+p=[cosφ+cos2φ++cos(N+p)φ]-[cosφ+cos2φ++cos(N-1)φ].

Thus we see that

|n=NN+Pcosnφn|<2KφN<ε

for all  natural numbersMathworldPlanetmath P as soon as  N>2Kφε. According to the Cauchy criterion, the latter series is convergent for the mentioned values of φ. The former series is handled similarly.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/6/17 6:47:56