请输入您要查询的字词:

 

单词 ExistenceOfMaximalSemilatticeDecomposition
释义

existence of maximal semilattice decomposition


Let S be a semigroupPlanetmathPlanetmath. A maximal semilattice decomposition for S is a surjectivePlanetmathPlanetmath homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath ϕ:SΓ onto a semilattice Γ with the property that any other semilattice decomposition factors through ϕ. So if ϕ:SΓ is any other semilattice decomposition of S, then there is a homomorphism ΓΓ such that the following diagram commutes:

\\xymatrixS\\ar[r]ϕ\\ar[dr]ϕ&Γ\\ar@-->[d]&Γ
Proposition.

Every semigroup has a maximal semilattice decomposition.

Proof.

Recall that each semilattice decompostion determines a semilattice congruence. If {ρiiI} is the family of all semilattice congruences on S, then define ρ=iIρi. (Here, we consider the congruencesPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath as subsets of S×S, and take their intersectionMathworldPlanetmathPlanetmath as sets.)

It is easy to see that ρ is also a semilattice congruence, which is contained in all other semilattice congruences.

Therefore each of the homomorphisms SS/ρi factors through SS/ρ.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 4:49:28