请输入您要查询的字词:

 

单词 ExponentialFunctionNeverVanishes
释义

exponential function never vanishes


In the entry exponential functionDlmfDlmfMathworldPlanetmathPlanetmath (http://planetmath.org/ExponentialFunction) one defines for real variable x the real exponential function  expx, i.e. ex, as the sum of power series:

ex=k=0xkk!

The series form implies immediately that the real exponentialfunction attains only positive values when  x0.  Alsofor  -1x<0  the positiveness is easy to see bygrouping the series terms pairwise.

In to study the sign of ex forarbitrary real x, we may multiply the series of ex ande-x using Abel’s multiplicationPlanetmathPlanetmath rule for series (http://planetmath.org/AbelsMultiplicationRuleForSeries).  We obtain

exe-x=n=0xnn!k=0(-1)kxkk!=n=0j=0n(-1)jxnj!(n-j)!=n=0xnn!j=0n(nj)(-1)j=n=0xnn!0n.

The last sum equals 1.  So, if  -x>0,  then  e-x>0,  whence ex must be positive.

Let us now consider arbitrary complex value  z=x+iy  where x and y are real.  Using the addition formulaPlanetmathPlanetmath of complex exponential function and the Euler relation, we can write

ez=ex+iy=exeiy=ex(cosy+isiny).

From this we see that the absolute valueMathworldPlanetmathPlanetmathPlanetmath of ez is ex, which we above have proved to be positive.  Accordingly, we may write the

Theorem.  The complex exponential function never vanishes.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 14:08:25