请输入您要查询的字词:

 

单词 ExponentValuation
释义

exponent valuation


Definition.  A function ν defined in a field K is called an exponent valuation or shortly an exponent of the field, if it satisfies the following conditions:

  1. 1.

    ν(0)=  and ν(α) runs all rational integers when α runs the nonzero elements of K.

  2. 2.

    ν(αβ)=ν(α)+ν(β).

  3. 3.

    ν(α+β)min{ν(α),ν(β)}.

Note that because of the discrete value set , an exponent valuation belongs to the discrete valuationsPlanetmathPlanetmath, andbecause of notational causes, to the order valuations.

Properties.
ν(1)=0
ν(-α)=ν(α)
ν(αβ)=ν(α)-ν(β)
ν(αn)=nν(α)
ν(α1++αn)min{ν(α),,ν(αn)}
ν(α+β)=min{ν(α),ν(β)}ifν(α)ν(β)

Example.  If an integral domainMathworldPlanetmath 𝒪 has a divisor theory  𝒪*𝔇, then for each prime divisor 𝔭 there is an exponent valuation ν𝔭 of the quotient field K of 𝒪.  It is given by

ν𝔭(α)=:{when α=0,max{k𝔭k(α)} when α0;
ν𝔭(ξ)=:ν𝔭(α)-ν𝔭(β) when ξ=αβ with α,β𝒪*.

Hence, 𝔭ν𝔭(α) exactly divides α.  Apparently, ν𝔭(ξ) does not depend on the quotient form αβ for ξ.  It is not hard to show that ν𝔭 defined above is an exponent of the field K.

Different prime divisors 𝔭 and 𝔮 determine different exponents ν𝔭 and ν𝔮, since the condition 3 of the definition of divisor theory (http://planetmath.org/DivisorTheory) guarantees such an element γ of 𝒪 which in divisible by 𝔭 but not by 𝔮; then  ν𝔭(γ)1,  ν𝔮(γ)=0.

Theorem.  Let  ν1,,νr  be different exponents of a field K.  Then for arbitrary set  n1,,nr  of integers, there exists in K an element ξ such that

ν1(ξ)=n1,,νr(ξ)=nr.

The proof of this theorem is found in [1].

References

  • 1 S. Borewicz & I. Safarevic: Zahlentheorie.  Birkhäuser Verlag. Basel und Stuttgart (1966).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 14:14:02