请输入您要查询的字词:

 

单词 ExtensionsWithoutUnramifiedSubextensionsAndClassNumberDivisibility
释义

extensions without unramified subextensions and class number divisibility


Theorem 1.

Let F/K be an extensionPlanetmathPlanetmath of number fieldsMathworldPlanetmath such that for any intermediate Galois extensionMathworldPlanetmath L/K, with KLF, there is at least one finite place or infinite place which ramifies in the extension L/K. Then, hK, the class numberMathworldPlanetmathPlanetmath of K, divides the class number of F, hF.

First, we deduce some immediate corollaries.

Corollary 1.

Let F/K be an extension of number fields which is totally ramified at some prime (or at an archimedean place). Then hK divides hF.

Proof.

The proof is clear since there cannot be unramified subextensions. The theorem applies.∎

Corollary 2.

Let F/K be a Galois extension of number fields such that Gal(F/K) is a non-abelian simple groupMathworldPlanetmathPlanetmath. Then hK divides hF.

Proof.

In this case, there cannot be subextensions with abelianMathworldPlanetmath Galois groupMathworldPlanetmath and the theorem applies.∎

Proof of the Theorem.

Let H be the Hilbert class fieldMathworldPlanetmath of K. By definition, H is the maximal unramified abelian extensionMathworldPlanetmathPlanetmath of K, Gal(H/K) is isomorphicPlanetmathPlanetmathPlanetmath to Cl(K), the ideal class group of K and [H:K]=hK. Since there are no nontrivial unramified abelian subextensions of F/K, we have FH=K and so [FH:F]=[H:K]=hK. One can show that the extension FH/F is unramified and abelian (in fact Gal(FH/F)Gal(H/K)). Therefore FH is contained in L, the Hilbert class field of F. Hence:

hF=[L:F]=[L:FH][FH:F]=[L:FH][H:K]=[L:FH]hK

and so, hK divides hF.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 5:28:55