请输入您要查询的字词:

 

单词 FactorizationOfTheDedekindZetaFunctionOfAnAbelianNumberField
释义

Factorization of the Dedekind zeta function of an abelian number field


The Dedekind zeta function of an abelian number fieldfactors as a product of Dirichlet L-functions as follows. Let Kbe an abelian number field, i.e. K/ is Galois andGal(K/) is abelian. Then, by the Kronecker-Weber theoremMathworldPlanetmath,there is an integer n (which we choose to be minimal) such thatK(ζn) where ζn is a primitive nthroot of unityMathworldPlanetmath. Let G=Gal((ζn)/)(/n)× and let χ:G× be aDirichlet characterDlmfMathworldPlanetmath. Then the kernel of χ determines a fixedfield of (ζn). Further, for any field K as before,there exists a group X of Dirichlet characters of G such thatK is equal to the intersection of the fixed fields by thekernels of all χX. The order of X is [K:] andXGal(K/).

Theorem ([1], Thm. 4.3).

Let K be an abelian number field and let X bethe associated group of Dirichlet characters. The Dedekind zetafunction of K factors as follows:

ζK(s)=χXL(s,χ).

Notice that for the trivial character χ0 one hasL(s,χ0)=ζ(s), the Riemann zeta functionDlmfDlmfMathworldPlanetmath, which has asimple poleMathworldPlanetmathPlanetmath at s=1 with residueDlmfMathworldPlanetmath 1. Thus, for an arbitraryabelian number field K:

ζK(s)=χXL(s,χ)=ζ(s)χ0χXL(s,χ)

where the last product is taken over allnon-trivial characters χX.

References

  • 1 L. C. Washington, Introduction to Cyclotomic FieldsMathworldPlanetmath, Springer-Verlag, New York.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:03:30