请输入您要查询的字词:

 

单词 FiniteDimensionalProperSubspacesOfANormedSpaceAreNowhereDense
释义

finite dimensional proper subspaces of a normed space are nowhere dense


- Let V be a normed spaceMathworldPlanetmath. If SV is a finite dimensional proper subspaceMathworldPlanetmath, then S is nowhere dense.

Proof :

It is known that for any topological vector spaceMathworldPlanetmath (in particular, normed spaces) every proper subspace has empty interior (http://planetmath.org/ProperSubspacesOfATopologicalVectorSpaceHaveEmptyInterior).

From the entry (http://planetmath.org/EveryFiniteDimensionalSubspaceOfANormedSpaceIsClosed) we also know that finite dimensional subspaces of V are closed.

Then, int(S¯)=int(S)=, which shows that S is nowhere dense.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 9:20:26