请输入您要查询的字词:

 

单词 FourierSineAndCosineSeries
释义

Fourier sine and cosine series


One sees from the formulae

an=1π-ππf(x)cosnxdx,
bn=1π-ππf(x)sinnxdx

of the coefficients an and bn for the Fourier seriesMathworldPlanetmath

f(x)=a02+n=1(ancosnx+bnsinnx)

of the Riemann integrablePlanetmathPlanetmath real function f on the interval  [-π,π],  that

  • an=2π0πf(x)cosnxdx,  bn=0n  if f is an even functionMathworldPlanetmath;

  • bn=2π0πf(x)sinnxdx,  an=0n  if f is an odd function.

Thus the Fourier series of an even function mere cosine and of an odd function mere sine .  This concerns the whole interval [-π,π].  So e.g. one has on this interval

x 2(sinx1-sin2x2+sin3x3-+).

Remark 1.  On the half-interval[0,π]  one can in any case expand each Riemann integrable functionMathworldPlanetmath f both to a cosine series and to a sine series, irrespective of how it is defined for the negative half-interval or is it defined here at all.

Remark 2.  On an interval  [-p,p],  instead of [-π,π],  the Fourier coefficients of the series

f(x)=a02+n=1(ancosnπxp+bnsinnπxp)

have the expressions

  • an=2p0pf(x)cosnπxpdx,  bn=0n  if f is an even function;

  • bn=2p0pf(x)sinnπxpdx,  an=0n  if f is an odd function.

Example.  Expand the identity function (http://planetmath.org/IdentityMap)  xx  to a Fourier cosine series on  [0,π].

This odd function may be replaced with the even function  f:x|x|.  Then we get

a0=2π0πx𝑑x=π

and, integrating by parts,

an=2π0πxcosnxdx=2π[/0πxsinnxn-0πsinnxndx]=2π/0πcosnxn2=2πn2((-1)n-1));

this equals to -4πn2 if n is an odd integer, but vanishes for each even n.  Thus we obtain on the interval  [0,π]  the cosine series

xπ2-4π(cosx12+cos3x32+cos5x52+).

Chosing here  x:=0  one gets the result

π28= 1+132+152+

(cf. the entry on http://planetmath.org/node/11010Dirichlet eta functionMathworldPlanetmath at 2).

Fourier double seriesMathworldPlanetmath.  The Fourier sine and cosine series introduced in Remark 1 on the half-interval  [0,π]  for a function of one real variable may be generalized for e.g. functions of two real variables on a rectangle  {(x,y)2  0xa, 0yb}:

f(x,y)=m=1n=1cmnsinmπxasinnπyb,(1)
f(x,y)=d004+12l=1(dl0coslπxa+d0lcoslπyb)+m=1n=1dmncosmπxacosnπyb(2)

The coefficients of the Fourier double sine series (1) are got by the double integral

cmn=4ab0a0bf(x,y)sinmπxasinnπybdxdy

where  m=1, 2, 3,  and  n=1, 2, 3,  The coefficients of the Fourier double cosine series (2) are correspondingly

dmn=4ab0a0bf(x,y)cosmπxacosnπybdxdy

where  m=0, 1, 2,  and  n=0, 1, 2,

Note.  One can use in the double series of (1) and (2) also the diagonal summing, e.g. for the double sine series as follows:
c11sinπxasinπyb+(c12sinπxasin2πyb+c21sin2πxasinπyb)+(c13sinπxasin3πyb+c22sin2πxasin2πyb+c31sin3πxasinπyb)+

References

  • 1 K. Väisälä: Matematiikka IV.  Hand-out Nr. 141. Teknillisen korkeakoulun ylioppilaskunta, Otaniemi, Finland (1967).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 5:36:54