请输入您要查询的字词:

 

单词 FreeAssociativeAlgebra
释义

free associative algebra


Fix a commutativePlanetmathPlanetmathPlanetmath unital ring K and a set X. Then a K-algebraMathworldPlanetmathPlanetmathPlanetmath F issaid to be free on X if there exists an injection ι:XF such that for all functions f:XA where A is an K-algebradetermine a unique algebra homomorphism f^:FA such thatιf^=f. This is an example of a universal mapping property forfree associative algebras and in categorical settings is often explainedwith the following commutative diagramMathworldPlanetmath:

\\xymatrix&X\\ar[ld]ι\\ar[rd]f&F\\ar[rr]f^&&A.

To prove that free associative algebras exist in the categoryMathworldPlanetmath of allassociative algebras we provide a couple standard constructions. Itis a standard categorical procedure to conclude any two free objectson the same set are naturally equivalent and thus each constructionbelow is equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath.

1 Tensor algebra

Let X be a set and K a commutative unital ring. Then take M to beany free K-module with basis X, and injection ι:XM.Then we may form the tensor algebra of M,

T(M)=iTi(M),Ti(M)=Mi=j=1iM.

[Note, 0 and the empty tensor we define as K.]Furthermore, define the injection ι:XT(M) as the map ι:XM followed by the embeddingPlanetmathPlanetmath of M into T(M).

Remark 1.

To make M concrete use the set of all functions f:XK, orequivalently, the direct productMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath XK. Then the tensor algebraof M is the free algebraMathworldPlanetmath on X.

Proposition 2.

(T(M),ι) is a free associative algebra on X.

Proof.

Given any associative K-algebra A and function f:XA, thenA is a K-module and M is free on X so f extends to a uniqueK-linear homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath f^:MA.

Next we define K-multilinear maps f(i):MiA by

f(i)(m1,,mi)=f(m1)f(mi).

Then by the universal mapping property of tensor productsPlanetmathPlanetmathPlanetmath (used inductively)we have a unique K-linear map f^(i):Ti(M)A for which

f^(i)(m1mi)=f(m1)f(mi).

Thus we have a unique algebra homomorphismf^():T(M)A such that ιf^=f.∎

This construction provides an obvious grading on the free algebra wherethe homogeneous components are

Tn(M)=Mn=j=1nM.

2 Non-commutative polynomials

An alternative construction is to model the methods of constructing freegroupsMathworldPlanetmath and semi-groups, that is, to use words on the set X. We willdenote the result of this construction by KX and we willfind many parallels to polynomial algebras with indeterminants in X.

Let FMX be the set of all words on X. This makesFMX a free monoid with identityPlanetmathPlanetmathPlanetmathPlanetmath the empty word andassociative productMathworldPlanetmathPlanetmath the juxtaposition of words. Then defineKX as the K-semi-group algebra on FMX.This means KX is the free K-modules oN FMXand the product is defined as:

(wFMXlww)(vFMXlvv)=w,vFMXlvlwwv.

For example, x,y contains elements of the form

x2+4yxy,-7xy+2yx,1+x+xy+xyx+x2y+x2y2.

This model of a free associative algebra encourages a mapping to polynomialringsMathworldPlanetmath. Indeed, KXK[X] is uniquely determined bythe free property applied to the natural inclusion of X into K[X].What we realize this mapping in a practical fashion we note that this simplyallows all indeterminants to commute. It follows from this that K[X] isa free commutative associaitve algebra.

For example, under this map we translateMathworldPlanetmath the above elements into:

x2+4xy2,-5xy,1+x+xy+2x2y+x2y2.

We also note that the grading detected in the tensor algebra constructionpersists in the non-commuting polynomial model. In particular, we say anelement in KX is homogeneousPlanetmathPlanetmathPlanetmathPlanetmath if it contained inFMX. Then the degree of a homogeneous elementPlanetmathPlanetmath is thelength of the word. Then the K-linear span of elements of degree iform the i-th graded componentMathworldPlanetmathPlanetmath of KX.

Remark 3.

We note that the free properties of both of these constructions dependin turn on the free properties of modules, the universal property oftensors and free semi-groups. An inspection of the common constructionof tensors and free modulesMathworldPlanetmathPlanetmath reveals both of these have universal propertiesimplied from the universal mapping property of free semi-groups. Thuswe may assert that free of associative algebras are a direct result ofthe existence of free semi-groups.

For non-associative algebras such as Lie and Jordan algebrasMathworldPlanetmathPlanetmath, theuniversal properties are more subtle.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 23:54:33