请输入您要查询的字词:

 

单词 FreeSemigroup
释义

free semigroup


Let X be a set.We define the power of X in a language-theoretical manner as

Xn={x1x2xnxjX for all j{1,,n}}

for all n{0}, and

X0={ε},

where εX.Note that the set X is not necessarily an alphabet,that is, it may be infiniteMathworldPlanetmath; for example, we may choose X=.

We define the sets X+ and X* as

X+=n{0}Xn

and

X*=nXn=X+{ε}.

The elements of X* are called words on X,and ε is called the empty wordPlanetmathPlanetmathPlanetmath on X.

We define the juxtaposition of two words v,wX* as

vw=v1v2vnw1w2wm,

where v=v1v2vn and w=w1w2wm,with vi,wjX for each i and j.It is easy to see that the juxtaposition is associative,so if we equip X+ and X* with itwe obtain respectively a semigroupPlanetmathPlanetmath and a monoid.Moreover, X+ is the free semigroup on X and X*is the free monoid on X,in the sense that they solve the following universalPlanetmathPlanetmathPlanetmath mapping problem:given a semigroup S (resp. a monoid M)and a map Φ:XS (resp. Φ:XM),a semigroup homomorphism Φ¯:X+S(resp. a monoid homomorphism Φ¯:X*M)exists such that the following diagram commutes:

\\xymatrix&X\\ar[r]ι\\ar[d]Φ&X+\\ar[dl]Φ¯&S&

(resp.

\\xymatrix&X\\ar[r]ι\\ar[d]Φ&X*\\ar[dl]Φ¯&M&

), where ι:XX+ (resp. ι:XX*)is the inclusion mapMathworldPlanetmath.It is well known from universal algebraMathworldPlanetmathPlanetmaththat X+ and X* are unique up to isomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath.

References

  • 1 J.M. Howie,Fundamentals of Semigroup Theory,Oxford University Press, Oxford, 1991.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 21:25:20