请输入您要查询的字词:

 

单词 FresnelIntegrals
释义

Fresnel integrals


0.1 The functions C and S

For any real value of the argumentMathworldPlanetmathPlanetmath x, the Fresnel integralsDlmfDlmfDlmfDlmfMathworldPlanetmath C(x) and S(x) are defined as the integralsDlmfPlanetmath

C(x):=0xcost2dt,S(x):=0xsint2dt.(1)

In optics, both of them express the .

Using the Taylor seriesMathworldPlanetmath expansions of cosine and sine (http://planetmath.org/ComplexSineAndCosine), we get easily the expansions of the functionsMathworldPlanetmath (1):

C(z)=z1-z552!+z994!-z13136!+-
S(z)=z331!-z773!+z11115!-z15157!+-

These converge for all complex values z and thus define entire transcendental functions.

The Fresnel integrals at infinity have the finite value

limxC(x)=limxS(x)=2π4.

0.2 Clothoid

The parametric presentation

x=C(t),y=S(t)(2)

a curve called clothoid.  Since the equations (2) both define odd functionsMathworldPlanetmath, the clothoid has symmetry about the origin.  The curve has the shape of a “”(see this http://www.wakkanet.fi/ pahio/A/A/clothoid.pngdiagram).

The arc lengthMathworldPlanetmath of the clothoid from the origin to the point  (C(t),S(t))  is simply

0tC(u)2+S(u)2𝑑u=0tcos2(u2)+sin2(u2)𝑑u=0t𝑑u=t.

Thus the of the whole curve (to the point (2π4,2π4)) is infiniteMathworldPlanetmath.

The curvature (http://planetmath.org/CurvaturePlaneCurve) of the clothoid also is extremely ,

ϰ= 2t,

i.e. proportional (http://planetmath.org/Variation) to the arc lenth; thus in the origin only the curvature is zero.

Conversely, if the curvature of a plane curve varies proportionally to the arc length, the curve is a clothoid.

This property of the curvature of clothoid is utilised in way and railway construction, since the form of the clothoid is very efficient when a portion of way must be bent to a turn:  the zero curvature of the line can be continuously raised to the wished curvature.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 19:51:53