请输入您要查询的字词:

 

单词 GaloisSubfieldsOfRealRadicalExtensionsAreAtMostQuadratic
释义

Galois subfields of real radical extensions are at most quadratic


Theorem 1.

Suppose FLK=F(αn)R are fields with αF and L Galois over F. Then [L:F]2.

Proof. Let ζn be a primitive nth root of unityMathworldPlanetmath, and define F=F(ζn), L=L(ζn), and K=K(ζn)=F(αn).

\\xymatrix@R1pc@C.3pc&K=K(ζn)=F(αn)\\ar@-[dl]\\ar@-[dr]&&K=F(αn)\\ar@-[dr]&&L=L(ζn)\\ar@-[dl]\\ar@-[dr]&&L\\ar@-[dr]&&F=F(ζn)\\ar@-[dl]&&F&

Now, L/F is Galois since L/F is. But K is a Kummer extensionMathworldPlanetmath of F, so has cyclic Galois groupMathworldPlanetmath and thus L/F has cyclic Galois group as well (being a quotientPlanetmathPlanetmath of Gal(K/F)). Thus L is a Kummer extension of F, so that L=F(βn) for some βF. It follows that L=F(βn). But since L is Galois over F, it follows that n2 (since otherwise in order to be Galois, L would have to contain the non-real nth roots of unity).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 9:20:56