-equivariant
Let be a compact Lie group acting linearly on and let be a mapping defined as . Then is -equivariant if
for all , and all .
Therefore if commutes with then is -equivariant.
[GSS]
References
- GSS Golubitsky, Martin. Stewart, Ian. Schaeffer, G. David.: Singularities and Groups in Bifurcation Theory (Volume II). Springer-Verlag, New York, 1988.