请输入您要查询的字词:

 

单词 GammaFunction
释义

gamma function


\\PMlinkescapephrase

generated by

Introduction

The gamma functionDlmfDlmfMathworldPlanetmath can be thought of asthe natural way to generalize the conceptMathworldPlanetmath of the factorialto non-integer argumentsPlanetmathPlanetmath.

Leonhard Euler (http://planetmath.org/EulerLeonhard)came up with a formulaMathworldPlanetmathPlanetmath for such a generalizationPlanetmathPlanetmath in 1729.At around the same time,James Stirling independently arrived at a different formula,but was unable to show that it always converged.In 1900, Charles Hermite showed that the formula given by Stirling does work,and that it defines the same functionMathworldPlanetmath as .

Definitions

Γ(z)=limnnzn!k=0n(z+k).

However, it is now more commonly defined by

Γ(z)=0e-ttz-1𝑑t

for z with Re(z)>0,and by analytic continuation for the rest of the complex plane,except for the non-positive integers (where it has simple polesMathworldPlanetmathPlanetmath).

Another equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath definition is

Γ(z)=e-γzzn=1(1+zn)-1ez/n,

where γ is Euler’s constant.

Functional equations

The gamma function satisfies the functional equation

Γ(z+1)=zΓ(z)

except when z is a non-positive integer.As Γ(1)=1, it follows by inductionMathworldPlanetmath that

Γ(n)=(n-1)!

for positive integer values of n.

Another functional equation satisfied by the gamma function is

Γ(z)Γ(1-z)=πsinπz

for non-integer values of z.

Approximate values

The gamma function for real z looks like this:

(generated by GNU Octave and gnuplot)

It can be shown that Γ(1/2)=π.Approximate values of Γ(x) for some other x(0,1) are:

Γ(1/5)4.5908Γ(1/4)3.6256Γ(1/3)2.6789Γ(2/5)2.2182Γ(3/5)1.4892Γ(2/3)1.3541Γ(3/4)1.2254Γ(4/5)1.1642

If the value of Γ(x) is known for some x(0,1),then one may calculate the value of Γ(n+x) for any integer nby making use of the formula Γ(z+1)=zΓ(z).We have

Γ(n+x)=(n+x-1)Γ(n+x-1)
=(n+x-1)(n+x-2)Γ(n+x-2)
=(n+x-1)(n+x-2)(x)Γ(x)

which is easy to calculate if we know Γ(x).

References

  • 1 Julian Havil,Gamma: Exploring Euler’s Constant,Princeton University Press, 2003.(Chapter 6 is about the gamma function.)
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:07:41