请输入您要查询的字词:

 

单词 GelfandTransform
释义

Gelfand transform


The Gelfand Transform

Let 𝒜 be a Banach algebraMathworldPlanetmath over .Let be the space of allmultiplicative linear functionals in 𝒜, endowed with the weak-* topologyMathworldPlanetmath. LetC() denote the algebra of complex valued continuous functionsMathworldPlanetmathPlanetmath in .

The Gelfand transform is the mapping

^:𝒜C()

xx^

where x^C() is defined byx^(ϕ):=ϕ(x),ϕ

The Gelfand transform is a continuous homomorphismPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath from 𝒜 to C().

Theorem - Let C0() denote the algebra of complex valued continuous functions in , that vanish at infinity.The image of the Gelfand transform is contained in C0().

The Gelfand transform is a very useful tool in the study of commutative Banach algebras and, particularly,commutativePlanetmathPlanetmathPlanetmath C*-algebras (http://planetmath.org/CAlgebra).

Classification of commutative C*-algebras: Gelfand-Naimark theorems

The following results are called the Gelfand-Naimark theoremsMathworldPlanetmath. They classify all commutative C*-algebras and all commutative C*-algebras with identity elementMathworldPlanetmath.

Theorem 1 - Let 𝒜 be a C*-algebra over . Then 𝒜 is*-isomorphic to C0(X) for some locally compact Hausdorff spacePlanetmathPlanetmath X. Moreover, the Gelfand transform is a*-isomorphism between 𝒜 and C0().

Theorem 2 - Let 𝒜 be a unital C*-algebra over . Then 𝒜 is*-isomorphic to C(X) for some compactPlanetmathPlanetmath Hausdorff space X. Moreover, the Gelfand transform is a*-isomorphism between 𝒜 and C().

The above theorems can be substantially improved. In fact, there is an equivalence (http://planetmath.org/EquivalenceOfCategories) between the category of commutative C*-algebras and the category of locally compact Hausdorff spaces. For more and details about this, see the entry about the general Gelfand-Naimark theorem (http://planetmath.org/GelfandNaimarkTheorem).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 23:40:32