请输入您要查询的字词:

 

单词 AbelsLemma
释义

Abel’s lemma


Theorem 1 Let{ai}i=0N and {bi}i=0N be sequences ofreal (or complex) numbers with N0.For n=0,,N, let An be the partial sumAn=i=0nai.Then

i=0Naibi=i=0N-1Ai(bi-bi+1)+ANbN.

In the trivial case, when N=0, then sum on the right hand sideshould be interpreted as identically zero. In other words,if the upper limit is below the lower limit, there is no summation.

An inductive proof can be found here (http://planetmath.org/ProofOfAbelsLemmaByInduction).The result can be found in [1] (Exercise 3.3.5).

If the sequences are indexed from M to N, we have the followingvariant:

CorollaryLet {ai}i=MN and {bi}i=MN be sequences ofreal (or complex) numbers with 0MN.For n=M,,N, let An be the partial sumAn=i=Mnai.Then

i=MNaibi=i=MN-1Ai(bi-bi+1)+ANbN.

Proof. By defininga0==aM-1=b0==bM-1=0, we can apply Theorem 1to the sequences {ai}i=0N and {bi}i=0N.

References

  • 1 R.B. Guenther, L.W. Lee,Partial Differential EquationsMathworldPlanetmath of Mathematical Physics and Integral Equations,Dover Publications, 1988.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 8:31:02