请输入您要查询的字词:

 

单词 GeneralizationOfYoungInequality
释义

generalization of Young inequality


It’s straightforward to extend Young inequalityMathworldPlanetmathPlanetmath (http://planetmath.org/YoungInequality)to an arbitrary finite number of : provided that ai>0, ci>0 and i=1n1ci=1r,

(i=1nai)rri=1naicici

In fact,

(i=1nai)r=exp[log(i=1nai)r]
=exp[ri=1nlogai]
=exp[ri=1n1cilog(aici)]
=exp[i=1n1cilog(aici)1r]
(by Jensen’s inequalityMathworldPlanetmath and monotonicity of exp)exp[log(i=1n1ciaici1r)]
=ri=1naicici

Remark: in the case

1ci=1 i

one obtains:

(i=1nai)1n1ni=1nai

that is, the usual arithmetic-geometric mean inequality, which suggestsYoung inequality could be regarded as a generalization of this classical result.Actually, let’s consider the following restatement ofYoung inequality. Having defined:wi=1ci,  i=1nwi=W=1r,xi=ai1wiwe have:

(i=1nxiwi)1W1Wi=1nwixi

This expression shows that Young inequality is nothing else thangeometric-arithmentic weighted mean (http://planetmath.org/ArithmeticMean) inequality.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 18:32:07